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An observation on the determinant of a
Sylvester-Kac type matrix

Carlos M. da Fonseca and Emrah Kılıç

Abstract
Based on a less-known result, we prove a recent conjecture concern-

ing the determinant of a certain Sylvester-Kac type matrix related to
some Lie Algebras. The determinant of an extension of that matrix is
presented.

1 Introduction

Matrices and Lie algebras have an interesting long relation and share many
problems. In a recent paper, Z. Hu and P.B. Zhang consider in [11] the poly-
nomial

det(z0I + z1A1 + · · ·+ zsAs) ,

where A1, . . . , As are square matrices of the same order the I the identity
matrix. Then they calculate the determinant of the finite dimensional irre-
ducible representations of sl(2, F ), and show that is either zero or a product
of some irreducible quadratic polynomials. In addition, it is proved that a
finite dimensional Lie algebra is solvable if and only if the characteristic poly-
nomial is completely reducible. For their purposes, they consider a specialised
tridiagonal matrix with zero main diagonal, (1, 2, . . . , n) superdiagonal, and
(n, n− 1, . . . , 1) subdiagonal. Then they establish a conjecture, proved in two
very particular cases.

The aim of this short note is to prove that conjecture based on a less-known
result by W. Chu in [3]. We also provide a new general formula containing
other particular known determinants. This formula can be used to extend [11],
and useful both in Lie algebras and matrix theory.
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2 The conjecture

Quite recently, in order to find formulas for the determinants of some Lie
algebras, Z. Hu and P.B. Zhang proposed in [11] the following conjecture.

Conjecture 1. The determinant of the matrix (n + 1)× (n + 1)

Jn(z0, z1) =



z0 + nz1 1
n z0 + (n− 2)z1 2

n− 1 z0 + (n− 4)z1
. . .

. . .
. . . n− 1
2 z0 − (n− 2)z1 n

1 z0 − nz1


is

n∏
k=0

(
z0 − (n− 2k)

√
z21 + 1

)
.

Notice that Conjecture 1 is equivalent to state that the eigenvalues of
Jn(0, z1) are

±(n− 2k)
√
z21 + 1 , for k = 0, 1, . . . , bn/2c.

The matrix Jn(z0, z1) can be easily identified as an extension of the so-
called Sylvester-Kac matrix. In fact, setting z1 = 0 we find the characteristic
matrix of the Sylvester-Kac matrix, also known as Clement matrix,

0 1
n 0 2

n− 1 0
. . .

. . .
. . . n
1 0

 .

The characteristic polynomial of this matrix (that is, det Jn(x, 0)) was first
conjecture in [20], by the 19th century British mathematician James Joseph
Sylvester celebrated, among other facets, as the founder of the American Jour-
nal of Mathematics, in 1878.

A fully comprehensive list of results on the different proofs for Sylvester’s
conjecture and the eigenpairs of non-trivial extensions of the Sylvester-Kac
matrix can be found in [1–10,12–19,21,22].

The aim of this short note is to prove Conjecture 1 based on a result by
W. Chu in [3]. We also provide a general result containing other particular
known determinants.
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3 An extension to the Sylvester-Kac matrix

In 2010, cleverly based on two generalized Fibonacci sequences, W. Chu proved
the following theorem.

Theorem 3.1 ( [3]). The determinant of the matrix (n + 1)× (n + 1)

Mn(x, y, u, v) =



x u
nv x + y 2u

(n− 1)v x + 2y
. . .

. . .
. . . n− 1
2v x− (n− 1)y nu

v x + ny


is

n∏
k=0

(
x +

ny

2
+

n− 2k

2

√
y2 + 4uv

)
.

Of course, the formula for the determinant in Theorem 3.1 can be rewritten
as

bn/2c∏
k=0

((
x +

ny

2

)2
− (n− 2k)2

4
(y2 + 4uv)

)
.

Now setting x = z0 +nz1, y = −2z1, and u = v = 1, we prove immediately
Conjecture 1.

Moreover, in the spirit of [1,9,10], using Theorem 3.1, we can also conclude
the following theorem.

Theorem 3.2. The eigenvalues of

M±n (a, b, r) =



nar b
na ((n− 1)a± b)r 2b

(n− 1)a ((n− 2)a± 2b)r 3b

(n− 2)a
. . .

. . .

. . .
. . . nb
a ±nbr


are

1

2

(
nr(a± b) + (n− 2k)

√
4ab + r2(a∓ b)2

)
,

for k = 0, 1, . . . , n.
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